Panasonic ideas for life

MULTI-RANGE

 ANALOG TIMER
PM4S
 Timers

Features

RoHS Directive compatibility information http://www.nais-e.com/

1. Economic pricing that promptly reflects market demands

Remarkable economic pricing is implemented in pursuit of cost performance.
2. Output contacts switchable between timed out 2C and timed out 1C/Instantaneous 1C
The timed out 1C/Instantaneous 1C output contact enables the efficient addition of self-maintenance circuits. 3. 4 different time ranges selectable on a single unit
Five types of timers cover the full range of time settings from 1 second to 30 hours.

4. Equipped with zero-setting instantaneous output

Set the dial all the way to "0" for instantaneous operation, so circuit testing can be easily accomplished.
5. Compliant with UL, c-UL and CE.

Product types

Type	IIIIIII	Contact arrangement	Time range	Operating voltage	Part No.
PM4S Multi-range Timer A type	Power ON-delay	T.D.:Timed-out 2CINST.:Timed-out 1CInstantaneous 1C(Selected by front switch)	$1 \mathrm{~s} / 10 \mathrm{~s} / 1 \mathrm{~min} / 10 \mathrm{~min}$ (4 time ranges selectable)	100 to 120V AC	PM4S-A2C10M-AC120V
				200 to 240V AC	PM4S-A2C10M-AC240V
				12 V DC	PM4S-A2C10M-DC12V
				24V DC	PM4S-A2C10M-DC24V
PM4S Multi-range Timer B type			$3 \mathrm{~s} / 30 \mathrm{~s} / 3 \mathrm{~min} / 30 \mathrm{~min}$ (4 time ranges selectable)	100 to 120V AC	PM4S-A2C30M-AC120V
				200 to 240V AC	PM4S-A2C30M-AC240V
				12 V DC	PM4S-A2C30M-DC12V
				24V DC	PM4S-A2C30M-DC24V
PM4S Multi-range Ttimer C type			6s/60s/6min/60min (4 time ranges selectable)	100 to 120 V AC	PM4S-A2C60M-AC120V
				200 to 240V AC	PM4S-A2C60M-AC240V
				12 V DC	PM4S-A2C60M-DC12V
				24 V DC	PM4S-A2C60M-DC24V
PM4S Multi-range Timer D type			$1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{~h} / 10 \mathrm{~h}$ (4 time ranges selectable)	100 to 120V AC	PM4S-A2C10H-AC120V
				200 to 240V AC	PM4S-A2C10H-AC240V
				12 V DC	PM4S-A2C10H-DC12V
				24 V DC	PM4S-A2C10H-DC24V
PM4S Multi-range Timer E type			$3 \mathrm{~min} / 30 \mathrm{~min} / 3 \mathrm{~h} / 30 \mathrm{~h}$ (4 time ranges selectable)	100 to 120V AC	PM4S-A2C30H-AC120V
				200 to 240 V AC	PM4S-A2C30H-AC240V
				12 V DC	PM4S-A2C30H-DC12V
				24V DC	PM4S-A2C30H-DC24V

Parts name

- The PM4S Multi-Range timer allows time units and output contacts to be selected via front switches.

PM4S

Specifications

Item			PM4S Multi-range Timer			
Rating	Rated operating voltage		100 to 120 V AC	200 to 240V AC	12 V DC	24V DC
	Rated frequency		50/60 Hz		-	
	Rated power consumption		Approx. 3.0VA/3.6VA (at 100 V AC) Approx. 4.5VA/5.25VA (at 120 V AC)	Approx. 5.6VA/6.8VA (at 200 V AC) Approx. 7.5VA/9.8VA (at 240 V AC)	Approx. 1.3W	Approx. 1.7W
	Output rating		5A 250V AC (resistive load)			
	Operating mode		Power ON-delay			
	Time range	A type	1s/10s/1min/10min (4 time ranges selectable)			
		B type	$3 \mathrm{~s} / 30 \mathrm{~s} / 3 \mathrm{~min} / 30 \mathrm{~min}$ (4 time ranges selectable)			
		C type	6s/60s/6min/60min (4 time ranges selectable)			
		D type	$1 \mathrm{~min} / 10 \mathrm{~min} / 1 \mathrm{~h} / 10 \mathrm{~h}$ (4 time ranges selectable)			
		E type	3min/30min/3h/30h (4 time ranges selectable)			
Time accuracy Note)	Operating time fluctuation		$\pm 1 \%$ (power off time change at the range of 0.1 s to 1 h)			
	Setting error		$\pm 5 \%$ (Full-scale value)			
	Voltage error		$\pm 1 \%$ (at the operating voltage changes between 85 to 110\%)			
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$)			
Contact	Contact arrangement		T.D.: Timed-out 2 Form C INST.: Timed-out 1 Form C, instantaneous 1 Form C (Selected by front switch)			
	Contact resistance (Initial value)		Max. $100 \mathrm{~m} \Omega$ (at 1A 6V DC)			
	Contact material		Silver alloy			
Life	Mechanical (contact)		Min. $10{ }^{7}$			
	Electrical (contact)		Min. 10^{5} (at raed control capacity)			
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage			
	Insulation resistance (Initial value)		Min. $100 \mathrm{M} \Omega$ Between live and dead metal parts Between input and output Between contacts of different poles Betacts of same pole			
	Breakdown voltage (Initial value)		$2,000 \mathrm{Vrms}$ for 1 min Between live and dead metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole			
	Min. power off time		100 ms			
	Max. temperature rise		$55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$			
Mechanical function	Vibration resistance	Functional	10 to 55 Hz : 1 cycle/min double amplitude of 0.25 mm (10 min on 3 axes)			
		Destructive	10 to 55 Hz : 1 cycle $/ \mathrm{min}$ double amplitude of 0.375 mm (1h on 3 axes)			
	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)			
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on 3 axes)			
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$			
	Ambient humidity		30 to 85\%RH (non-condensing)			
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$			
	Ripple factor (DC type)		20\%			
Others	Weight		Approximately 110 g 3.880 oz			

Notes) 1. Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
2. For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$.

Applicable standard

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category III
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA EN61000-4-2 4 kV contact 8 kV air EN61000-4-3 $\quad 10 \mathrm{~V} / \mathrm{m}$ AM modulation (80 MHz to 1 GHz) $10 \mathrm{~V} / \mathrm{m}$ pulse modulation (895 MHz to 905 MHz) EN61000-4-4 2 kV (power supply line) EN61000-4-5 1 kV (power line) EN61000-4-6 $10 \mathrm{~V} / \mathrm{m}$ AM modulation (0.15 MHz to 80 MHz) EN61000-4-8 $30 \mathrm{~A} / \mathrm{m}(50 \mathrm{~Hz})$ EN61000-4-11 $10 \mathrm{~ms}, 30 \%$ (rated voltage) $100 \mathrm{~ms}, 60 \%$ (rated voltage) $1,000 \mathrm{~ms}, 60 \%$ (rated voltage) $5,000 \mathrm{~ms}, 95 \%$ (rated voltage)

Dimension (Unit: mm inch) Tolerance: $\pm 0.5 \pm .020$

- Surface mount dimensions
- Panel mount dimensions (with mounting frame)

- Panel cut out dimensions

Standard cut out dimensions are shown below.
Use mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- Adjacent mounting

- Terminal layouts and wiring diagrams

Notes:

1. Operating voltage signs in parentheses () indicate the polarity of the DC type.
2. 4^{\prime} is a time delay contact
ψ^{\prime} is an instantaneous contact.

Operation mode

1.T.D. mode

2. INST. mode

Precautions during usage

1. Avoid locations subject to flammable or corrosive gases, excessive dust, oil, vibrations, or excessive shocks.
2. Since the main-unit is made of polycarbonate resin, avoid contact with or use in environments containing methyl alcohol, benzene, thinners, and other organic solvents; and ammonia, caustic sodas, and other alkaline substances.
3. Power supply superimposed surge protector
Although a surge protector will withstand standard-waveform voltage with the values in the next table, anything above this will destroy the internal circuit. You should therefore use a surge absorber.

12 V DC	
24 V DC	100 to 120 V AC
200 to 240 V AC	
500 V	$4,000 \mathrm{~V}$

- Surge waveform
$[\pm(1.2 \times 50) \mu$ s uni-polar full wave voltage]

4. In order to maintain the characteristics, do not remove the timer case.
5. When installing the panel, use the ATA4811 mounting frame (Sold separately).
6. If you change the operating voltage, be sure not to allow leak current into the timer.
7. Avoid leaving the unit powered continuously. Leaving the unit powered up with output set to ON continuously for a long period of time (about 1 month or more) will wear out the electronic components. If you will be keeping it powered continuously, combine with a relay to create the circuit shown below:

8. The timer setting dial should only be turned within the range indicated on the dial face. Turning it too far may break the stopper and cause damage to internal components.

Acquisition of CE marking

Please abide by the conditions below when using in applications that comply with EN61812-1.

1. Overvoltage category III, pollution level 2
2. The load connected to the output contact should have basic insulation. This timer is protected with basic insulation and can be doubleinsulated to meet EN/IEC requirements by using basic insulation on the load.
3. Please use a power supply that is protected by an overcurrent protection device which complies with the EN/ IEC standard (example: 250 V 1 A fuse, etc.).
4. You must use a terminal socket or socket for the installation. Do not touch the terminals or other parts of the timer when it is powered. When installing or un-installing, make sure that no voltage is being applied to any of the terminals.
5. Do not use this timer as a safety circuit. For example when using a timer in a heater circuit, etc., provide a protection circuit on the machine side.

Panasonic ideas for life

DIN48 SIZE
MULTI-RANGE ANALOG TIMER

PM4H-A
 PM4H-S
 PM4H-M

UL File No.: E122222

CSA File No.: LR39291

Features

1. 100-240V AC free-voltage input, 48-125V DC type available
2. Short body -62.5 mm 2.461 inch (screw terminal type)
3. Front panel of IP65 type is protected against water-splash and dust
4. Built-in Screw terminals

Screw terminal type is used for easy wiring and reducing additional cost for accessories.
5. 0 setting instantaneous output operation
6. Multiple time ranges -1 s to 500 h (Max.)
7. 8 different operation modes: (PM4H-A)
8. Compliant with UL/CSA, CE and LLOYD

RoHS Directive compatibility information http://www.nais-e.com/
mm inch

Screw
terminal type

Product types

[^0]
PM4H-A/S/M

Time range

	Time unit	sec	\min	hrs	10h
1	Control time range	0.1 s to 1 s	0.1 min to 1 min	0.1 h to 1 h	1.0h to 10h
5		0.5 s to 5 s	0.5 min to 5 min	0.5 h to 5h	5h to 50h
10		1.0 s to 10 s	1.0 min to 10 min	1.0h to 10h	10h to 100h
50		5 s to 50s	5 min to 50 min	5h to 50h	50h to 500h

PM4H-A/PM4H-S/PM4H-M
All types of PM4H timer have multi-time range.
16 time ranges are selectable.
1s to 500 h (Max. range) is controlled.

Note: 0 setting is for instantaneous output operation.

Specifications

Note: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$.

Terminal layouts and Wiring diagrams

PM4H-A

Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out 2 Form C

Screw terminal type

- Timed-out 1 Form C
- Instantaneous 1 Form C

Operating:
$\stackrel{+-)^{-+}}{ }$

PM4H-S
Pin type

- Timed-out 2 Form C

Screw terminal type

- Timed-out 2 Form C

1) DC Type

Type	Pin	Screw terminal
PM4H-A	Connect the terminal (2) to negative $(-)$, and the terminal (10) to positive (+).	
PM4H-S PM4H-M	Connect the terminal (2) to negative $(-)$, and the terminal (7) to positive (+).	

2) Contact

3) Voltage should not be applied to the various inputs (reset, start, and stop) of the PM4H-A multi-range timer. These inputs should be input without voltage.

Parts name

PM4H-S

Time range selector
16 time settings selectable
(1 s to 500 h)
1s 5 s 10 s 50 s
1 min 5 min 10 min 50 min
1h 5 h 10 h 50 h
10h 50h 100h 500h

PM4H-A

Operation mode selector
Selectable from 8 operation modes
ON : Pulse ON-delay
FL : Pulse Flicker
FO : Pulse ON-flicker
OF1 : Differential ON/OFF-delay (1)
SF : Signal OFF-delay
OS : Pulse One-shot
OF2 : Differential ON/OFF-delay (2)
OC : Pulse One-cycle

PM4H-A/S/M

Dimensions

- PM4H- \square

Screw terminal type
(Flush mount)

- Panel mount dimensions (with mounting frame)

Screw terminal type

Pin type
(Flush mount/Surface mount)

Pin type

- Surface mount dimensions

Pin type

- Panel cut out dimensions

Standard cut out dimensions are shown below.
Use mounting frame (AT8-DA4) and rubber gasket (ATC18002).

- Adjacent mounting

Note) 1. The proper thickness of mounting panel is between 1 to 5 mm .
2. Adjacent mount is less water-resistant.

Operation mode

PM4H-A

Operation type	Explanation	Time chart
Pulse ON-delay (ON)	- If using a time-limit start when the power is turned on, and a reset when the power is turned off, pins (2) to (6) (screw-tightening pins 2 and (3) should be shorted ahead of time. - Turn the operation mode selector switch to the ©il) position. If pins (2) to (6) (screw-tightening pins 2) and 3) are shorted (the start input is turned on) with the power supply on, the output will go on after the set time has elapsed. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2 to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	
Pulse Flicker	- If using a time-limit start when the power is turned on, and a reset when the power is turned off, pins (2) to (6) (screw-tightening pins 2 and (3) should be shorted ahead of time. - Turn the operation mode selector switch to the © ${ }^{(F)}$ position. When pins (2) to (6) (screw-tightening pins 2 and 3) are shorted (the start input is turned on) with the power supply on, the limited time interval begins, and the output goes on after the set time has elapsed. After the output has gone on, it goes off when the set time has elapsed, and this process is subsequently repeated. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2 to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	
Pulse ON-flicker FO)	- If using a time-limit start when the power is turned on, and a reset when the power is turned off, pins (2) to (6) (screw-tightening pins 2 and 3) should be shorted ahead of time. - Turn the operation mode selector switch to the $\left.{ }^{\circ} \mathrm{O}\right)$ position. When pins (2) to (6) (screw-tightening pins 2 and 3) are shorted (the start input is turned on) with the power supply on, the output goes on, and after the set time has elapsed, it goes off. This process is subsequently repeated. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2) to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	
Differential ON/OFF-delay (1) (0F1)	- Turn the operation mode selector switch to the © ©fi position. When pins (2) to (6) (screw-tightening pins [2 and 3) are shorted (the start input is turned on) with the power supply on, the output goes on, and after the set time has elapsed, it goes off. Also, when pins (2) to (6) are released (the start input goes off), the output goes on, and after the set time has elapsed, it goes off. If the status of pins (2) to (6) (screw-tightening pins 2 and 3) changes during the time-limit interval (the start input goes from on to off, or from off to on), the time-limit interval is restarted from the point at which the change took place. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2 to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	
Signal OFF-delay SF	- Turn the operation mode selector switch to the (SF) position. When pins (2) to (6) (screw-tightening pins [2 and 3) are shorted (the start input is turned on) with the power supply on, the output goes on, and when pins (2) to (6) (screw-tightening pins 2 and (3) are released (the start input is turned off), the time limit interval begins. After the set time has elapsed, the output goes off. If start input is entered at any point during the time limit interval, the time limit interval is reset. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2) to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	

Note: Keep 0.1 s or more for power off time.
Keep 0.05 s or more for start, stop, reset input time.

Operation type	Explanation	Time chart
Pulse One-shot (OS	- If using a time-limit start when the power is turned on, and a reset when the power is turned off, pins (2) to (6) (screw-tightening pins 2 and (3) should be shorted ahead of time. - Turn the operation mode selector switch to the (©S) position. When pins (2) to (6) (screw-tightening pins 2 and 3) are shorted (the start input is turned on) with the power supply on, the output goes on for the set time limit interval. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2) to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	Δ Note: 㨝 LED lighting or No LED lighting
Differential ON/OFF-delay (2) (OF2)	- Turn the operation mode selector switch to the © $\odot 2$) position. When pins (2) to (6) (screw-tightening pins 2 and 3) are shorted (the start input is turned on) with the power supply on, the time limit interval begins, and after the set time interval has elapsed, the output goes on. Also, when pins (2) to (6) are released (the start input goes off), the time limit interval begins, and after it has elapsed, the output goes off. If the status of pins (2) to (6) (screw-tightening pins 2 and 3) changes during the time-limit interval (the start input goes from on to off, or from off to on), the time limit interval is restarted from the point at which the change took place. If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2 to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	
Pulse One-cycle (OC)	- If using a time-limit start when the power is turned on, and a reset when the power is turned off, pins (2) to (6) (screw-tightening pins 2 and 3) should be shorted ahead of time. - Turn the operation mode selector switch to the (0C) position. When pins (2) to (6) (screw-tightening pins 2 and 3) are shorted (the start input is turned on) with the power supply on, the output goes on after the set time limit interval has elapsed. After it has gone on, it goes off after one pulse (approximately 0.8 seconds). If the power supply is turned off, or pins (2) to (7) (screw-tightening pins 2 to 4) are shorted (the reset input is turned on), a reset is carried out. Note) During time-limited operation, the time-limited operation is stopped while the pins (2) to (5) (screw-tightening pins 2 to 5) are being shorted (the stop input is on). When the pins are released, time-limited operation resumes.	

Note: Keep 0.1s or more for power off time.
Keep 0.05 s or more for start, stop, reset input time.

PM4H-S

* LED lighting LED flickering

Operation type	Explanation	Time chart	
Power ON-delay	Time limit contact relay When the power supply is turned on, the output goes on after the set time interval has elapsed. When the power supply is turned off, a reset is carried out.	Power supply Time out (N.O. contact) OP. LED POWER LED	

PM4H-M

Operation type	Explanation	Time chart
Power ON-delay Power Flicker Power ON-flicker FO Power One-shot (OS Power One-cycle (0C)	Turn the operation mode selector switch to display the various operations. When the power supply is turned on, the time limit interval begins, and operation is carried out. When the power supply is turned off, a reset is carried out.	Power ON-delay

[^1]
PM4H SERIES MODES AND TIME SETTING

1. Operation method
 1) Operation mode setting [PM4H-A type]

8 operation modes are selectable with operation mode selector.
Turn the operation mode selector with screw driver.
Operation mode is shown up through the window above the mode selector. The

Turn the mode selector to the mark until you can check by clicking sound.
Confirm the mode selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2) Time range setting

[PM4H series common]
16 time ranges are selectable between 1 s to 500 h .
Turn the time range selector with the screw driver.
Clockwise turning increases the time range, and Counter-clockwise turning decrease the time range.
Confirm the range selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2. How to use "Set ring" [PM4H series common]

1) Fixed time setting

Set the desired time and put 2 set rings together.
Insert the rings into stopper to fix the time.

2) Time range setting

Example: Time range 20s to 30s.
(1) Shorter time value setting

Set the dial to 20s.
Place the stop ring at the right side of stopper.

3) Time setting [common]

To set the time, turn the set dial to a desired time within the range. Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under " 0 " range. (Instantaneous output area) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.
If the position is not stable, the timer might mis-operate.
(2) Longer time value setting

Set the dial to 30s.
Place the stop ring at the left side of stopper.

Note) The stoppers for the lower limit setting set ring and the upper limit setting set ring face the opposite directions.

Applicable standard (PM4H series common)

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category III
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

Panasonic ideas for life

DIN48 SIZE ANALOG STAR（ $ᄉ$ ）－DELTA（ \triangle ）TIMERS PM4H－SD／SDM
mm inch

UL File No．：E122222
 CSA File No．：LR39291

Features

1．Select four types of time ranges between 0.2 s and 100 s on a single unit．
2．Select between five types of time ranges between 0.04 s and 0.7 s for the $\lambda-\triangle$ switching times．
3．There is a $\lambda-\triangle$ switching indicator so you can check the operation at a glance．
4．The AC free power supply and shorter body make it easier to use．
5．Compliant with UL，CSA，CE and LLOYD．

RoHS Directive compatibility information

 http：／／www．nais－e．com／
Specifications

Item Type			PM4H－SD／SDM
Rating	Rated operating voltage		100 to 240 V AC， 24 V AC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common
	Rated power consumption		Approx．6VA（100 to 240V AC），Approx．1．4VA（24V AC）
	Rated control capacity		5A 250V AC（resistive load）
	Operation mode		$\lambda-\triangle$ star－delta switching（Power ON－delay）
	人 operation control time range		2s to 100s， 4 time ranges switchable
	人 \triangle switching time		$0.04,0.1,0.3,0.5,0.7 \mathrm{~s}$（ 5 time range selectable）
Time accuracy Note：）	Operation time fluctuation		$\pm 0.3 \%$（power off time change at the range of 0.5 s to 1 h ）
	Setting error		$\pm 5 \%$（Full－scale value）
	Voltage error		$\pm 0.5 \%$（at the operating voltage changes between 85 to 110% ）
	Temperature error		$\pm 2 \%$（at $20^{\circ} \mathrm{C}$ ambient temp．at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$ ）
Contact	Contact arrangement		Star（人）side：Timed－out 1 Form A，Delta（ Δ ）side：Timed－out 1 Form A Instantaneous： 1 Form A（Instantaneous for PM4H－SDM type only）
	Contact resistance（Initial value）		Max． $100 \mathrm{~m} \Omega$（at 1A 6V DC）
	Contact material		Au flash on Silver alloy
Life	Mechanical（contact）		2×10^{7}
	Electrical（contact）		10^{5}（at rated control capacity）
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage（at $20^{\circ} \mathrm{C}$ coil temp．）
	Insulation resistance（Initial value）		Between live and dead metal parts Min． $100 \mathrm{M} \Omega$ Meen input and output Between contacts of different poles（＊3） Between contacts of same pole （At 500 V DC）
	Breakdown voltage（Initial value）		$2,000 \mathrm{Vrms}$ for 1 min Between live and dead metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles（＊3） $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole
	Min．power off time		500 ms
	Max．temperature rise		$65^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$
Mechanical function	Vibration resistance	Functional	10 to 55 Hz ： 1 cycle／min double amplitude of 0.25 mm （ 10 min on 3 axes）
		Destructive	10 to 55 Hz ： 1 cycle／min double amplitude of 0.375 mm （ 1 h on 3 axes）
	Shock resistance	Functional	Min． $294 \mathrm{~m} / \mathrm{s}^{2}$（4 times on 3 axes）
		Destructive	Min． $980 \mathrm{~m} / \mathrm{s}^{2}$（ 5 times on 3 axes）
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$
	Ambient humidity		Max．85\％RH（non－condensing）
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$
Others	Protective construction		IP65 on front panel（using rubber gasket ATC18002）＜only for IP65 type＞
	Weight		100 g 3.527 oz （Pin type），110g 3.880 oz（Screw terminal type）

Notes：1）Unless otherwise specified，the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage， $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature，and 1s power off time．
2）For the 2 s range，the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$ ．
3）Between contacts of different poles for PM4H－SDM type only．

PM4H－SD／SDM

Time range

Time range unit	Operating（s）	$\lambda-\triangle$ switching time（s）
Time range	0.2 to 2	0.04
2	1 to 10	0.1
10	2 to 20	0.3
20	10 to 100	0.5
100		0.7

Product types

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	Terminal type	Part number
PM4H－SD Star（入）－Delta (\triangle) switching	Star（人）－ Delta（ \triangle ） switching	Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A	4 selectable ranges over 2s to 100s （ $\lambda-\triangle$ switching time： $0.04,0.1,0.3,0.5,0.7 \mathrm{~s})$	IP65	100 to 240V AC	8 pins	PM4HSD－S－AC240VW
						Screw terminal	PM4HSD－S－AC240VSW
					24V AC	8 pins	PM4HSD－S－AC24VW
						Screw terminal	PM4HSD－S－AC24VSW
PM4H－SDM Star（人）－Delta (\triangle) switching （Instantaneous contact）		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A Instantaneous： 1 Form A			100 to 240 V AC	8 pins	PM4HSDM－S－AC240VW
						Screw terminal	PM4HSDM－S－AC240VSW
					24 V AC	8 pins	PM4HSDM－S－AC24VW
						Screw terminal	PM4HSDM－S－AC24VSW
PM4H－SD Star（人）－Delta (\triangle) switching		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A		IP50	00 to 240 V AC	8 pins	PM4HSD－S－AC240V
						Screw terminal	PM4HSD－S－AC240VS
					24V AC	8 pins	PM4HSD－S－AC24V
						Screw terminal	PM4HSD－S－AC24VS
PM4H－SDM Star（人）－Delta (\triangle) switching （Instantaneous contact）		Relay Timed－out人 side： 1 Form A \triangle side： 1 Form A Instantaneous： 1 Form A			100 to 240 V AC	8 pins	PM4HSDM－S－AC240V
						Screw terminal	PM4HSDM－S－AC240VS
					24V AC	8 pins	PM4HSDM－S－AC24V
						Screw terminal	PM4HSDM－S－AC24VS

Terminal layouts and Wiring diagrams

Pin type

－No instantaneous contact • With instantaneous contact

（5）－（8）λ side time－delay contact
（6）－（8）：$\widehat{\triangle}$ side time－delay contact
（1）－（3）：Instantaneous contact
（PM4H－SDM type）

Screw terminal type
－No instantaneous contact

－With instantaneous contact

Dimensions

Operation

t_{1} ：人 operation time
（人 indicator LED lights）
t2：人－\triangle switching time
t3：\triangle operation time
（ \triangle indicator LED lights）

PM4H SERIES MODES AND TIME SETTING

1. Operation method
 1) Operation mode setting [PM4H-A type]

8 operation modes are selectable with operation mode selector.
Turn the operation mode selector with screw driver.
Operation mode is shown up through the window above the mode selector. The

Turn the mode selector to the mark until you can check by clicking sound.
Confirm the mode selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2) Time range setting

[PM4H series common]
16 time ranges are selectable between 1 s to 500 h .
Turn the time range selector with the screw driver.
Clockwise turning increases the time range, and Counter-clockwise turning decrease the time range.
Confirm the range selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2. How to use "Set ring" [PM4H series common]

1) Fixed time setting

Set the desired time and put 2 set rings together.
Insert the rings into stopper to fix the time.

2) Time range setting

Example: Time range 20s to 30s.
(1) Shorter time value setting

Set the dial to 20s.
Place the stop ring at the right side of stopper.

3) Time setting [common]

To set the time, turn the set dial to a desired time within the range. Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under " 0 " range. (Instantaneous output area) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.
If the position is not stable, the timer might mis-operate.
(2) Longer time value setting

Set the dial to 30s.
Place the stop ring at the left side of stopper.

Note) The stoppers for the lower limit setting set ring and the upper limit setting set ring face the opposite directions.

Applicable standard (PM4H series common)

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category III
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

Panasonic ideas for life

mm inch

RoHS Directive compatibility information

 http://www.nais-e.com/DIN48 SIZE ANALOG MULTIRANGE POWER OFF-DELAY TIMERS

UL File No.: E122222
 CSA File No.: LR39291

Features

1. Switch operation times between three types of time ranges of 1 s to 10 s and 1 \min to 10 min .
2. Instantaneous reset available.
3. The shorter body makes it easier to use.
4. Compliant with UL, CSA, CE and LLOYD.

Specifications

*Notes: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature.
2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$. When the power goes on, in rush current (0.3 A) flows. Cautions should be taken. The minimum power supplying time after forced reset input is 2 s or more.
3) Between contacts of different pools for PM4H-F8, PM4H-F11R types only.

PM4H-F

Time range

Time range unit	s range type	min range type
1	0.04 s to 1 s	0.04 min to 1 min
5	0.2 s to 5 s	0.2 min to 5 min
10	0.4 s to 10 s	0.4 min to 10 min

Product types

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	Terminal type	Part number
PM4H-F8	Power OFF-delay (without reset)	Relay Timed-out 2 Form C	3 selectable time ranges over 1s to 10s	IP65	100 to 120V AC	8 pins	PM4HF8-S-AC120VW
					200 to 240V AC	8 pins	PM4HF8-S-AC240VW
					24 V AC	8 pins	PM4HF8-S-AC24VW
					12 V DC	8 pins	PM4HF8-S-DC12VW
					24V DC	8 pins	PM4HF8-S-DC24VW
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pins	PM4HF8-M-AC120VW
					200 to 240 V AC	8 pins	PM4HF8-M-AC240VW
					24 V AC	8 pins	PM4HF8-M-AC24VW
					12 V DC	8 pins	PM4HF8-M-DC12VW
					24V DC	8 pins	PM4HF8-M-DC24VW
			3 selectable time ranges over 1s to 10s	IP50	100 to 120V AC	8 pins	PM4HF8-S-AC120V
					200 to 240V AC	8 pins	PM4HF8-S-AC240V
					24 V AC	8 pins	PM4HF8-S-AC24V
					12 V DC	8 pins	PM4HF8-S-DC12V
					24V DC	8 pins	PM4HF8-S-DC24V
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pins	PM4HF8-M-AC120V
					200 to 240V AC	8 pins	PM4HF8-M-AC240V
					24 V AC	8 pins	PM4HF8-M-AC24V
					12 V DC	8 pins	PM4HF8-M-DC12V
					24V DC	8 pins	PM4HF8-M-DC24V
PM4H-F8R	Power OFF-delay (with instantaneous reset)	Relay Timed-out 1 Form C	3 selectable time ranges over 1s to 10s	IP65	100 to 120V AC	8 pins	PM4HF8R-S-AC120VW
					200 to 240V AC	8 pins	PM4HF8R-S-AC240VW
					24 V AC	8 pins	PM4HF8R-S-AC24VW
					12 V DC	8 pins	PM4HF8R-S-DC12VW
					24V DC	8 pins	PM4HF8R-S-DC24VW
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pins	PM4HF8R-M-AC120VW
					200 to 240V AC	8 pins	PM4HF8R-M-AC240VW
					24 V AC	8 pins	PM4HF8R-M-AC24VW
					12 V DC	8 pins	PM4HF8R-M-DC12VW
					24V DC	8 pins	PM4HF8R-M-DC24VW
			3 selectable time ranges over 1s to 10s	IP50	100 to 120V AC	8 pins	PM4HF8R-S-AC120V
					200 to 240V AC	8 pins	PM4HF8R-S-AC240V
					24 V AC	8 pins	PM4HF8R-S-AC24V
					12 V DC	8 pins	PM4HF8R-S-DC12V
					24V DC	8 pins	PM4HF8R-S-DC24V
			3 selectable time ranges over 1 min to 10 min		100 to 120V AC	8 pins	PM4HF8R-M-AC120V
					200 to 240V AC	8 pins	PM4HF8R-M-AC240V
					24 V AC	8 pins	PM4HF8R-M-AC24V
					12 V DC	8 pins	PM4HF8R-M-DC12V
					24V DC	8 pins	PM4HF8R-M-DC24V

PM4H-F

Type	Operation mode	Contact arrangement	Time range	Protective construction	Rated operating voltage	Terminal type	Part number
PM4H-F11R	Power OFF-delay (with instantaneous reset)	Relay Timed-out 2 Form C	3 selectable time ranges over 1s to 10s	IP65	100 to 120V AC	11 pins	PM4HF11R-S-AC120VW
						Screw terminal	PM4HF11R-S-AC120VSW
					200 to 240 V AC	11 pins	PM4HF11R-S-AC240VW
						Screw terminal	PM4HF11R-S-AC240VSW
					24 V AC	11 pins	PM4HF11R-S-AC24VW
						Screw terminal	PM4HF11R-S-AC24VSW
					12V DC	11 pins	PM4HF11R-S-DC12VW
						Screw terminal	PM4HF11R-S-DC12VSW
					24V DC	11 pins	PM4HF11R-S-DC24VW
						Screw terminal	PM4HF11R-S-DC24VSW
				IP50	100 to 120V AC	11 pins	PM4HF11R-S-AC120V
						Screw terminal	PM4HF11R-S-AC120VS
					200 to 240 V AC	11 pins	PM4HF11R-S-AC240V
						Screw terminal	PM4HF11R-S-AC240VS
					24 V AC	11 pins	PM4HF11R-S-AC24V
						Screw terminal	PM4HF11R-S-AC24VS
					12 V DC	11 pins	PM4HF11R-S-DC12V
						Screw terminal	PM4HF11R-S-DC12VS
					24V DC	11 pins	PM4HF11R-S-DC24V
						Screw terminal	PM4HF11R-S-DC24VS
			3 selectable time ranges over 1 min to 10 min	IP65	100 to 120V AC	11 pins	PM4HF11R-M-AC120VW
						Screw terminal	PM4HF11R-M-AC120VSW
					200 to 240 V AC	11 pins	PM4HF11R-M-AC240VW
						Screw terminal	PM4HF11R-M-AC240VSW
					24 V AC	11 pins	PM4HF11R-M-AC24VW
						Screw terminal	PM4HF11R-M-AC24VSW
					12 V DC	11 pins	PM4HF11R-M-DC12VW
						Screw terminal	PM4HF11R-M-DC12VSW
					24V DC	11 pins	PM4HF11R-M-DC24VW
						Screw terminal	PM4HF11R-M-DC24VSW
				IP50	100 to 120 V AC	11 pins	PM4HF11R-M-AC120V
						Screw terminal	PM4HF11R-M-AC120VS
					200 to 240 V AC	11 pins	PM4HF11R-M-AC240V
						Screw terminal	PM4HF11R-M-AC240VS
					24 V AC	11 pins	PM4HF11R-M-AC24V
						Screw terminal	PM4HF11R-M-AC24VS
					12V DC	11 pins	PM4HF11R-M-DC12V
						Screw terminal	PM4HF11R-M-DC12VS
					24V DC	11 pins	PM4HF11R-M-DC24V
						Screw terminal	PM4HF11R-M-DC24VS

Dimensions

- Screw terminal type (Flush mount)

- Pin type (Flush mount/surface mount)

PM4H-F

Terminal layouts and Wiring diagrams

- PM4H-F8 (without reset input)

Pin type
Time-out 2 Form C

Screw-tightening pin type
The PM4H-F11R should be used for the timelimit 2C.

- PM4H-F8R (with reset input)

Pin type
Time-out 1 Form C, with reset input

Screw-tightening pin type
The PM4H-F11R should be used for the time-
limit 1C and to connect reset input.

- PM4H-F11R (with reset input)

Pin type
Time-out 2 Form C, with reset input

Screw terminal type
Time-out 2 Form C, with reset input

PM4H-F (with reset) input conditions

1. Contact input (pin type example)

Use a contact with good contact reliability for the input. Contact bounce can lead to erroneous operation of the timer, so use a contact with short bounce time. Make the resistance between terminals for a short circuit less than 1 k -ohms. Make the resistance between terminals for an open circuit greater than 100 k -ohms.
2. Non-contact input (pin type example)

Photo-coupler

PM4H-F11R

Be sure to use a photocoupler for non-contact input.

Check that Vce $=0.6 \mathrm{~V}$ Max. when ON.

Operation

- PM4H-F8 (without reset input)

- PM4H-F8R/F11R (with reset input)

$\mathrm{t}<\mathrm{T}$: Time setting
Tr: Minimum power supply application time
Note: Ts: Min. 2s (Time to restart operation after reset input is set to OFF: both second type and minute type)

PM4H SERIES MODES AND TIME SETTING

1. Operation method
 1) Operation mode setting [PM4H-A type]

8 operation modes are selectable with operation mode selector.
Turn the operation mode selector with screw driver.
Operation mode is shown up through the window above the mode selector. The

Turn the mode selector to the mark until you can check by clicking sound.
Confirm the mode selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2) Time range setting

[PM4H series common]
16 time ranges are selectable between 1 s to 500 h .
Turn the time range selector with the screw driver.
Clockwise turning increases the time range, and Counter-clockwise turning decrease the time range.
Confirm the range selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2. How to use "Set ring" [PM4H series common]

1) Fixed time setting

Set the desired time and put 2 set rings together.
Insert the rings into stopper to fix the time.

2) Time range setting

Example: Time range 20s to 30s.
(1) Shorter time value setting

Set the dial to 20s.
Place the stop ring at the right side of stopper.

3) Time setting [common]

To set the time, turn the set dial to a desired time within the range. Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under " 0 " range. (Instantaneous output area) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.
If the position is not stable, the timer might mis-operate.
(2) Longer time value setting

Set the dial to 30s.
Place the stop ring at the left side of stopper.

Note) The stoppers for the lower limit setting set ring and the upper limit setting set ring face the opposite directions.

Applicable standard (PM4H series common)

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category III
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

Panasonic ideas for life

mm inch

RoHS Directive compatibility information

 http://www.nais-e.com/
DIN48 SIZE

ANALOG MULTI-LANGE CYCLIC TWIN TIMERS

UL File No.: E122222
 CSA File No.: LR39291

Features

1. A single twin timer unit that repeats (variable) ON/OFF.
2. Multiple ranges with a 0.1 s to 500 h time specification on a single unit.
3. The output ON/OFF operation is indicated by red and green LED's.

It's easy to check the operation at a glance.
4. The AC free power supply and shorter body make it easier to use.
5. A new screw terminal type has been added to the conventional pin type.

Wiring can be done easily with a screwdriver.
6. Compliant with UL, CSA, CE and LLOYD.

Specifications

Item Type			PM4H-W
Rating	Rated operating voltage		100 to 240 V AC, 48 to 125 V DC, 12 V DC, 24 V AC/DC
	Rated frequency		$50 / 60 \mathrm{~Hz}$ common (AC operating type)
	Rated power consumption		Approx. 10VA (100 to 240 V AC) Approx. 2.5VA (24V AC) Approx. 1.5W (12V DC, 24 V DC, 48 to 125 V DC)
	Rated control capacity		5A 250V AC (resistive load)
	Operation mode		Cyclic (OFF-start/Twin operation)
	Time range		1s to 500 h 16 time ranges switchable ($\mathrm{T}_{1}, \mathrm{~T}_{2}$ time setting individually)
Time accuracy Note:)	Operation time fluctuation		$\pm 0.3 \%$ (power off time change at the range of 0.3 s to 1 h)
	Setting error		$\pm 5 \%$ (Full-scale value)
	Voltage error		$\pm 0.5 \%$ (at the operating voltage changes between 85 to 110%)
	Temperature error		$\pm 2 \%$ (at $20^{\circ} \mathrm{C}$ ambient temp. at the range of -10 to $+50^{\circ} \mathrm{C}+14$ to $122^{\circ} \mathrm{F}$)
Contact	Contact arrangement		Timed-out 2 Form C
	Contact resistance (Initial value)		Max. $100 \mathrm{~m} \Omega$ (at 1A 6V DC)
	Contact material		Silver alloy
Life	Mechanical (contact)		2×10^{7}
	Electrical (contact)		10^{5} (at rated control capacity)
Electrical function	Allowable operating voltage range		85 to 110% of rated operating voltage (at $20^{\circ} \mathrm{C}$ coil temp.)
	Insulation resistance (Initial value)		Between live and dead metal parts Min. $100 \mathrm{M} \Omega$ Between input and output Between contacts of different poles Between contacts of same pole (At 500 V DC)
	Breakdown voltage (Initial value)		$2,000 \mathrm{Vrms}$ for 1 min Between live and metal parts $2,000 \mathrm{Vrms}$ for 1 min Between input and output $2,000 \mathrm{Vrms}$ for 1 min Between contacts of different poles $1,000 \mathrm{Vrms}$ for 1 min Between contacts of same pole
	Min. power off time		300 ms
	Max. temperature rise		$55^{\circ} \mathrm{C} 131^{\circ} \mathrm{F}$
Mechanical function	Vibration resistance	Functional	10 to 55 Hz : 1 cycle/min double amplitude of 0.25 mm (10 min on 3 axes)
		Destructive	10 to 55 Hz : 1 cycle $/ \mathrm{min}$ double amplitude of 0.375 mm (1 h on 3 axes)
	Shock resistance	Functional	Min. $98 \mathrm{~m} / \mathrm{s}^{2}$ (4 times on 3 axes)
		Destructive	Min. $980 \mathrm{~m} / \mathrm{s}^{2}$ (5 times on 3 axes)
Operating condition	Ambient temperature		-10 to $+50^{\circ} \mathrm{C}+14$ to $+122^{\circ} \mathrm{F}$
	Ambient humidity		30 to 85% RH (non-condensing)
	Atmospheric pressure		860 to $1,060 \mathrm{hPa}$
	Ripple factor (DC type)		20\%
Others	Protective construction		IP65 on front panel (using rubber gasket ATC18002) <only for IP65 type>
	Weight		120 g 4.233 oz (Pin type), 130g 4.586 oz (Screw terminal type)

[^2]
PM4H-W

Time range

All types of PM4H-W timer have multi-time range.
16 time ranges are selectable.
1 s to 500 h (Max. range) is controlled.

Scale	Time unit	sec	min	hrs	10h
1	Control time range	0.1 s to 1 s	0.1 min to 1 min	0.1 h to 1 h	1.0h to 10h
5		0.5 s to 5 s	0.5 min to 5 min	0.5 h to 5 h	5 h to 50h
10		1.0s to 10s	1.0 min to 10 min	1.0h to 10h	10h to 100h
50		5 s to 50s	5 min to 50 min	5h to 50h	50h to 500h

Product types

| Type | Operating
 mode | Contact arrangement | Time range | Protective
 structure | Rated Operating
 voltage | Terminal
 type | Part number |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Terminal layouts and Wiring diagrams

Pin Type
Cyclic timed-out relay contact: 2C

Screw terminal type

Cyclic timed-out relay contact: 2C

$\stackrel{\sim}{\sim}$

Dimensions

- Screw terminal type: M3.5

- Pin type

Operation

PM4H SERIES MODES AND TIME SETTING

1. Operation method
 1) Operation mode setting [PM4H-A type]

8 operation modes are selectable with operation mode selector.
Turn the operation mode selector with screw driver.
Operation mode is shown up through the window above the mode selector. The

Turn the mode selector to the mark until you can check by clicking sound.
Confirm the mode selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2) Time range setting

[PM4H series common]
16 time ranges are selectable between 1 s to 500 h .
Turn the time range selector with the screw driver.
Clockwise turning increases the time range, and Counter-clockwise turning decrease the time range.
Confirm the range selector position if it is correct.
If the position is not stable, the timer might mis-operate.

2. How to use "Set ring" [PM4H series common]

1) Fixed time setting

Set the desired time and put 2 set rings together.
Insert the rings into stopper to fix the time.

2) Time range setting

Example: Time range 20s to 30s.
(1) Shorter time value setting

Set the dial to 20s.
Place the stop ring at the right side of stopper.

3) Time setting [common]

To set the time, turn the set dial to a desired time within the range. Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under " 0 " range. (Instantaneous output area) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.
If the position is not stable, the timer might mis-operate.
(2) Longer time value setting

Set the dial to 30s.
Place the stop ring at the left side of stopper.

Note) The stoppers for the lower limit setting set ring and the upper limit setting set ring face the opposite directions.

Applicable standard (PM4H series common)

Safety standard	EN61812-1	Pollution Degree 2/Overvoltage Category III
EMC	(EMI)EN61000-6-4 Radiation interference electric field strength Noise terminal voltage (EMS)EN61000-6-2 Static discharge immunity RF electromagnetic field immunity EFT/B immunity Surge immunity Conductivity noise immunity Power frequency magnetic field immunity Voltage dip/Instantaneous stop/Voltage fluctuation immunity	EN55011 Group1 ClassA EN55011 Group1 ClassA

PRECAUTIONS IN USING THE PM4H SERIES

1. Input connections (PM4H-A type)
1) Be sure not to use terminal (10) as the common terminal of the input signal as shown in Fig. A. Otherwise, the internal circuit of the timer may be damaged.
Use terminal (2) as the common terminal as shown in Fig. B.

If the circuits is connected as in Fig. C, the internal circuits must be broken. Be sure to connect the circuit as in Fig. D.

2) When one input signal is simultaneously applied to more than one timer, be sure to avoid the wiring shown in Fig. E. Otherwise, the short-circuit current will flow and cause damage. Be sure to align the polarity of the power supply as shown in Fig. F.

$\underset{\text { Contact }}{\text { Fig. }}$

3) Terminal (2)-(6) (screw terminal 2-3) should be connected as the start input. Connect terminals (2)-(7) (screw terminal 2-4) for reset signal input. Connect terminals (2)-(5) (screw terminal 2-5) for stop signal input. Be sure not to connect with other terminals and apply excessive voltage. The internal circuit will be damaged.
4) The input wiring other than the power supply circuit should avoid these conditions, high-voltage wiring and parallel wiring with power wire. Wire in short with using the shielding wire or metal wiring tube.
5) For start, reset and stop input, use gold-plated contact with high reliability.
Since contact bouncing causes errors in the start, use an input contact less bounce time.
6) Keep the minimum signal input time over 0.05 s .

2. Input signal conditions
 (PM4H-A type)

1) Connection of contact input (Pin type example

Use gold-plated contacts with high-reliability. The bounce time at the contacts causes errors in the timer operation time. Accordingly, use start input contact whose bounce time is short. The resistance when shorted should be less than $1 \mathrm{k} \Omega$, and when open resistance should be more than $100 \mathrm{k} \Omega$.
For the screw terminal type, connect the terminal 2 to the each input signal.
2) Connection of non-contact input (Pin type example)
(open-collector)

Apply the open-collector connection. The characteristics of the transistor used must be $\mathrm{V}_{\text {CEO }}=10 \mathrm{~V}$ or more, $\mathrm{Ic}=10 \mathrm{~mA}$ or more, and Iсво=6 $\mu \mathrm{A}$ or less. Additionally, the input impedance must be $1 \mathrm{k} \Omega$ or less, and the residual voltage must be 0.6 V or less.

For the screw terminal type, connect the terminal 2 to the each input signal.
3) Connection of non-contact input (Pin type example)
(voltage input)

Even if the open collector is not used, input is also possible from the non-contact circuit of 6 to 30V DC. In this case, the start input is turned on when the signal is turned from H to L .
The residual voltage must be 0.6 V or less when Q is on. On the AC type, an insulated transformer is required as the power supply for the photoelectric sensor, etc. (power supply for the input devices).
Note: Keep the minimum input signal time of each signal to 0.05 s or more.

3. Checking the contacts before use

(PM4H-F only)

When the power ON time is less than the minimum power application time, the contacts may remain in an ON state, so the state of the contacts should be checked before use. When the contacts are in an ON state, activating them once will return them to their normal state (the OFF state after time-out). (Be aware that relay characteristics may result in the contacts being in that same ON state if exposed to excessive vibration and impact during transport.)

4. Time setting

To set the time, turn the set dial to a desired time within the range.
Instantaneous output will be on when the dial is set to " 0 ".
When the instantaneous output is used, the dial should be set under "0" range. (Instantaneous output area)
Note) When power supply is on, the time range, setting time and operation mode cannot be changed.
Turn off the power supply or a reset signal is applied to set the new operation mode.
If the position is not stable, the timer might mis-operate.

PRECAUTIONS IN USING THE PM4H SERIES

5. Superimposed surge of power

 supply (PM4H series common) For the superimposed surge of power supply, the standard waveform is taken as the standard value for surge-proof voltage.If external surge occurs exceeding the specified value, the internal circuit may break down. In this case, use a surge absorption element.

Operation voltage	Surge voltage
100 to 240 V AC	
100 to 120 V AC	$4,000 \mathrm{~V}$
200 to 240 V AC	
48 to 125 V DC	
12 V DC, 24 V DC	
$24 \mathrm{~V} \mathrm{AC} / \mathrm{DC}$	500 V

The positive and negative voltages are applied each five times between the power pins.
The typical surge absorption elements include a varistor, a capacitor, and a diode. If a surge absorption element is used, use an oscilloscope to see whether or not the foreign surge exceeding the specified value appears.

6. Acquisition of CE marking

Please abide by the conditions below when using in applications that comply with EN61812-1.

1) Overvoltage category III, pollution level 2
2) This timer employs a power supply without a transformer, so the power and input signal terminals are not insulated. (PM4H-A only)
(1) When a sensor is connected to the input circuit, install double insulation on the sensor side.
(2) In the case of contact input, use dualinsulated relays, etc.
3) The load connected to the output contact should have basic insulation.
This timer is protected with basic insulation and can be double-insulated to meet EN/IEC requirements by using basic insulation on the load.
4) Please use a power supply that is protected by an overcurrent protection device which complies with the EN/IEC standard (example: 250 V 1 A fuse, etc.).
5) You must use a terminal socket or socket for the installation. Do not touch the terminals or other parts of the timer when it is powered. When installing or un-installing, make sure that no voltage is being applied to any of the terminals.
6) Do not use this timer as a safety circuit. For example when using a timer in a heater circuit, etc., provide a protection circuit on the machine side.

[^0]: If you use this timer under harsh environment, please order above sealed type (IP65 type). IP65 type - Protection dust and water jet splay on the front face.

[^1]: Note: Keep 0.1s or more for power off time. PM4H-M timers do not have each input which is start, reset and stop.

[^2]: Notes: 1) Unless otherwise specified, the measurement conditions at the maximum scale time standard are specified to be the rated operating voltage (within 5% ripple factor for DC), $20^{\circ} \mathrm{C} 68^{\circ} \mathrm{F}$ ambient temperature, and 1 s power off time.
 2) For the 1 s range, the tolerance for each specification becomes $\pm 10 \mathrm{~ms}$.
 3) As internal components may become worn when using continuous conduction, the product should be replaced periodically.

